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A common goal in ecology and its applications is to better understand how species’ 
distributions change over space and time, yet many conventional summary metrics 
(e.g. center of gravity) of distribution shifts may offer limited inference because such 
changes may not be spatially homogenous. We develop a modeling approach to estimate 
a spatially explicit temporal trend (i.e. local trend), alongside spatial (temporally con-
stant) and spatiotemporal (time-varying) components, to compare inferred spatial shifts 
to those indicated by conventional metrics. This method is generalizable to many data 
types including presence–absence data, count data and continuous data types such as 
density. To demonstrate the utility of this new approach, we focus on the application of 
this model to a community of well-studied marine fish species on the US west coast (19 
species, representing a wide range of presence–absence and densities). Results from con-
ventional model selection indicate that the use of the model accounting for local trends is 
clearly justified for over 89% of these species. In addition to making more parsimonious 
and accurate predictions, we illustrate how estimated spatial fields from the local trend 
model can be used to classify regions within the species range where change is relatively 
homogenous. Conventional summary metrics, such as center of gravity, can then be 
calculated on each such region or within previously defined biogeographic boundaries. 
We use this approach to illustrate that change is more nuanced than what is expressed 
via global metrics. Using arrowtooth flounder Atheresthes stomias as an example, the 
observed southward shift over time in the center of gravity is not reflective of a uniform 
shift in densities but local trends of decreasing density in the northern region and rapidly 
increasing density at the southern edge of the species’ range. Thus, estimating local trends 
with spatiotemporal models improves interpretation of species distribution change.

Keywords: monitoring, spatial management, spatiotemporal modeling, species 
distribution modeling

Introduction

In the fields of natural resource conservation, management and global change biology, 
demand for and implementation of tools for assessing species distribution shifts has 
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grown dramatically in recent decades (Elith and Leathwick 
2009). These approaches are widely applicable, from stud-
ies of plants (Lenoir  et  al. 2008), terrestrial vertebrates 
(Hitch and Leberg 2007) and marine fishes (Pinsky  et  al. 
2013). However, the way distribution shifts are quantified 
has changed relatively little (Elith et al. 2010). At the sim-
plest level, researchers often use existing tools to estimate 
occurrence probability, present maps of how the extent and 
distribution of suitable habitat is expected to change, and 
sometimes present descriptive statistics on the mean change 
throughout a region (Yackulic  et  al. 2013). Yet, when reli-
able abundance data are available, distribution shifts are more 
robustly quantified by spatial predictions of population size 
because these are a richer form of data that are less sensi-
tive to detection issues and anomalous observations of sin-
gle individuals (Tingley and Beissinger 2009), while being 
more likely to detect persistent distribution shifts caused by 
more nuanced factors than absolute physiological limits. For 
example, while much species distribution modeling focuses 
on how drivers such as climate change may predict change in 
species’ range limits, the core of a species’ distribution may 
shift due to the influence of multiple drivers on the geogra-
phy of abundance via movement, dispersal and heterogene-
ity in demographic rates (e.g. age- or size-specific fecundity, 
somatic growth and mortality; Sagarin et al. 2006). Shifting 
distributions of abundance or population density may also be 
qualitatively conveyed through maps, but quantitative spatial 
indicators can also be provided, such as the mean location 
weighted by population density (also termed the ‘center of 
gravity’, COG; Thorson et al. 2015).

Spatial distributions of population density are often 
complex and heterogeneous (Sagarin and Gaines 2002, 
Sagarin  et  al. 2006). Heterogeneity may be present in the 
distribution of a species throughout its range, but the change 
in a species’ population density over time may also have a 
spatially varying component. Mechanisms responsible for 
spatial variability in change might be biological (e.g. varia-
tion in birth and death rates) or forced by spatially struc-
tured pressures (such as environmental or habitat change, 
and anthropogenic disturbances, Barnett  et  al. 2019 and 
references therein). Consequently, attempting to describe a 
uniform shift in distribution across a broad geographic range 
can be misleading (Sagarin  et  al. 2006), particularly when 
different regions exhibit contrasting trends. For example, if 
densities increase at opposing range boundaries at an equiva-
lent rate, there may be no trend in the range-wide COG, 
masking finer-scale shifts. Thus, when using spatial indica-
tors to describe species distribution shifts, the spatial scale 
of aggregation can affect inference (Connor et al. 2019), as 
in the classic problem of pattern and scale in ecology (Levin 
1992). Therefore, there is a general need to develop objective 
methods for defining appropriate scales to evaluate changes 
in species distributions.

Techniques for estimating how populations vary over space 
and time evolved rapidly with increases in computational 
power and the development of novel methods and applica-
tions of tools such as hierarchical statistical models. Some 

of the largest methodological changes have been advances 
in spatiotemporal analyses that model space continuously 
and explicitly account for spatial autocorrelation between 
spatially referenced observations that are proximate in both 
space and time (Banerjee  et  al. 2008, Finley  et  al. 2009, 
Latimer et al. 2009, Cressie and Wikle 2011, Shelton et al. 
2014, Thorson et  al. 2015). There are a number of advan-
tages of estimating a species’ density in a framework that 
accounts for spatial or spatiotemporal variation. First, explic-
itly accounting for spatial variation in density has been 
shown to increase precision of estimated temporal trends 
(Thorson  et  al. 2015). Second, modeling spatial or spatio-
temporal variation in population density can be performed 
within flexible and established frameworks such as mixed-
effect models where the spatial or spatiotemporal compo-
nents are estimated as random effects (Latimer et al. 2009, 
Cressie and Wikle 2011, Shelton  et  al. 2014, Finley  et  al. 
2015). Similar to their non-spatial predecessors, these spatio-
temporal modeling approaches often treat time as a discrete 
factor to allow for unbiased estimates of temporal trends. 
With such approaches, the spatial distribution of density can 
either be constant (modeled as a single spatial field) or time-
varying (with variability modeled either as independent over 
time, or as an autoregressive process).

These, and similar spatial model-based estimators, have 
in many applications replaced conventional design-based 
estimators of population density (e.g. area-weighted mean 
of observations), which assume that density is homogenous 
within sampling strata (Chen et al. 2004). In addition to being 
used for estimating population density or spatial distribu-
tions, output from these modeling approaches has been used 
to generate model-based summaries to track change in spe-
cies distributions, including the COG or area occupied, with 
more robust estimation than that provided by design-based 
estimates (Thorson et al. 2016a). As tools to implement these 
methods have become accessible in open source software, such 
as INLA (Rue et al. 2009), VAST (Thorson 2019b) or sdm-
TMB (Anderson et al. 2019, 2020), these approaches have 
seen broad application to populations in diverse ecosystems 
around the world, including terrestrial plants (Banerjee et al. 
2008, Finley et al. 2009, Latimer et  al. 2009) and animals 
(Thorson  et  al. 2016b), freshwater (Hocking  et  al. 2018) 
and marine communities (Shelton et al. 2014, Thorson et al. 
2015, 2016a, Thorson and Barnett 2017, Anderson and 
Ward 2019).

Spatiotemporal modeling of population density has par-
ticularly flourished in the field of marine fisheries, where 
practical constraints limit the use of spatial capture–recap-
ture, distance sampling and other survey methods typically 
applied in terrestrial and freshwater systems that have led to 
parallel development of models for similar purposes (Efford 
2004, 2011, Royle and Young 2008, Royle  et  al. 2013). 
The most reliable estimates of marine fish densities at broad 
scales are generally derived from fishery-independent sur-
veys where observations of population density are taken to 
be proportional to the catch-per-unit-effort of a fishing gear, 
often implemented using some form of stratified random 
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sampling design. In addition to providing the data on popu-
lation size and structure that is needed for managing indi-
vidual fish populations, fishery-independent survey data are 
used for purposes such as informing ecosystem-based man-
agement (Link  et  al. 2002, Nicholson and Jennings 2004, 
Harvey  et  al. 2018), evaluating the impacts of harvesting 
non-target species (Stock et al. 2019), and quantifying shifts 
in species distributions (Pinsky  et  al. 2013, Thorson  et  al. 
2016a). Changes in the spatial distribution of marine fishes 
have significant implications for community structure and 
national food security (Rice and Garcia 2011). Thus, robust 
predictions of marine fish distribution shifts are needed, yet 
difficult to obtain given sparse and often uneven sampling 
effort, short monitoring time series, limited ability to repeat-
sample individuals, and the complexities of surveying open 
populations with rich spatial structure. Spatial heterogeneity 
is particularly strong in these marine ecosystems, where com-
plex coastline, bathymetric topography and geology inter-
act with physical oceanographic drivers (Levin et al. 2010). 
Therefore, it is critical to determine to what degree such het-
erogeneity must be accounted for to adequately characterize 
marine fish distribution shifts.

Here, we introduce a new approach to address how esti-
mates of change in species distributions are dependent on the 
spatial scale of quantitative indicators of species distribution. 
We describe the development of a modeling technique that 
explicitly accounts for spatial variability in how population 
densities change through time to estimate finer-scale indica-
tors of species distribution shifts (local trends). While widely 
applicable to a wide range of data types (presence–absence, 
discrete counts or continuous measures such as biomass 
density), we focus on an application to changes in the dis-
tribution of commercially fished marine species. These rep-
resent 19 species from a 15-yr publicly available trawl survey 
dataset. We illustrate how our new approach may be used to 
infer changes over time, and also how output from this mod-
eling approach may be useful in identifying spatial regions 
where change is greater or lesser than average. Specifically, we 
compare interpretations of species distribution shifts along 
a spectrum of indicators from coarse-scales (global COG 
trends calculated over an entire survey domain), to moder-
ate- (regional COG trends) and fine-scales (local trend).

Material and methods

Spatial GLMM overview

The majority of recent applications of species distribution 
models (SDMs) to marine fish survey data have been imple-
mented in a GLMM (generalized linear mixed‐effects model) 
framework, where random effects are used to describe spa-
tial or spatiotemporal components. Spatial components are 
differentiated from spatiotemporal components in that the 
former are constant, whereas the latter vary through time. 
Examples include applications to Gaussian predictive process 
models (Shelton et al. 2014, Anderson and Ward 2019), and 

predictive modeling using integrated nested Laplace approxi-
mations (INLA; Rue et al. 2009, Ruiz-Cárdenas et al. 2012, 
Thorson et al. 2015). The latter approach has been particu-
larly useful for large datasets, where substantial gains in com-
putational efficiency are accomplished by taking advantage 
of sparse matrix approximations to the variance–covariance 
matrix (Thorson and Barnett 2017). Regardless of the estima-
tion approach used, the general formulation of these models 
uses a link function g(·) to relate the observed response to 
covariates and a latent spatial process. For example,

g us t s t s s t, , ,( ) = +X b + w ε 	 (1)

where us,t is the expectation at location s and time t, Xs,t are 
covariates, b represents a vector of estimated coefficients, 
w s is the mean spatial component at location s (constant 
through time) and ε s,t is the spatiotemporal process at loca-
tion s and time t. The spatiotemporal process describing ε  
is flexible in that it can be removed from the model (leav-
ing a model with a spatial but no spatiotemporal compo-
nent), may be independent for each time slice, or modeled 
with an autoregressive process (allowing hotspots to per-
sist through time; Ward  et  al. 2015, Thorson  et  al. 2015, 
Anderson and Ward 2019). Previous applications to marine 
fishes have either used a delta-GLMM framework to model 
presence–absence and population density (e.g. biomass per 
unit area) when present separately (Thorson et al. 2015) or 
a Tweedie distribution to model total variation in density  
(Anderson et al. 2019).

Within this GLMM framework, non-stationary changes 
in the spatial predictions through time can only be modeled 
with inclusion of dynamic covariates, or by modeling spa-
tiotemporal variability as an autoregressive spatial process 
through time. While inclusion of covariates can improve 
predictive performance in some cases (Shelton et al. 2014, 
Johnson et al. 2019), this requires additional data and can 
introduce new challenges associated with finding the most 
appropriate form of the covariate effect, thus for generality 
and simplicity we focus here primarily on a latent variable 
approach for describing patterns in spatially explicit tempo-
ral trends (hereafter local trends) rather than directly infer-
ring their drivers. Estimates of local trends may be derived 
from spatial and spatiotemporal fields post-hoc; however, 
such post-hoc estimation results in biases (Supporting 
information), specifically a low bias caused by partial pool-
ing, which effectively pulls the intercept deviations toward 
the mean. To explicitly account for non-stationary trends 
in densities, we extend the above framework to include a 
trend parameter as an additional spatial random field for the 
slopes over time (in the simplest case, each value in the field 
represents the spatially-explicit linear trend of the response 
over the modeled time period). Extending the model above, 
this becomes

g u ts t s t s s t s, , ,( ) = + + +X b w zε 	 (2)



430

where zs represents the spatially varying temporal trend, or 
local trend. This local trend field can be thought of as the spa-
tial variability in how a species’ density changes through time, 
which differentiates such trends from time-independent spa-
tiotemporal random fields (Fig. 1). Note that this framework 
could also be extended to model systems in which most spa-
tially explicit responses are non-linear by either modifying 
the model structure (e.g. …+zst2 or a new and truly non-
linear term in the strict sense) or by fitting separate models to 
each stanza during which a linear trend is suspected.

Testing the ability to recover local trends

We conducted a simulation analysis to evaluate our ability 
to recover an added spatial field representing the true local 
trend. Given results from previous work on similar classes of 
models (Finley et al. 2015, Auger-Méthé et al. 2016, Finley 
and Banerjee 2020), we focused our simulations on under-
standing how the magnitude of spatiotemporal variation 
and observation error variation affect our ability to recover 
the local trend (details in Supporting information, or in the 
publicly available code used to generate these analyses). We 
also performed similar sensitivity analyses to verify that the 
magnitude of spatial variance and local trend would affect 
our ability to recover the local trend in predictable ways. All 
simulations were conducted following these five steps: 1) for 
each evaluated (time-invariant) value of spatiotemporal varia-
tion and observation error, we simulated a random spatial 
field. 2) We then simulated a latent spatiotemporal process 
over 10 time steps, using spatial and spatiotemporal compo-
nents (modeled as independent from year to year) along with 
the local trend field. 3) To include measurement or observa-
tion error, we simulated normally distributed observations 
from this spatiotemporal process. 4) Fit a spatial GLMM 
to the simulated data and assumed the model structure to 

be known. 5) Compared estimated values of the local trend 
at the locations of the data with known values to generate 
statistical summaries (bias [expectation of difference], vari-
ance [sample variance of difference] and Pearson correlations 
between predicted and observed values). For each combina-
tion of parameter values, we simulated 100 random datasets.

West coast groundfish application

As an example of how the local trend model can be applied 
to improve the interpretation of changes in spatial distribu-
tion, we fit the local trend model to groundfish data collected 
from a fishery-independent survey along the US west coast: 
the NOAA Fisheries, Northwest Fisheries Science Center, US 
West Coast Groundfish Bottom Trawl Survey (Keller  et  al. 
2017) from 2003 to 2018. The annual survey uses a stratified 
random sampling design, with strata defined by depth and 
latitude, to estimate population density (in terms of catch per 
area swept by the net) along the continental shelf and upper 
slope (from 55 to 1280 m depth) of California, Oregon and 
Washington state. Roughly 650 tows (the unit of observa-
tion) are performed during two passes from north to south, 
typically occurring between late May and the end of October. 
This survey represents an ideal case study because it has been 
used extensively in testing new index standardization meth-
ods for stock assessments (Thorson et al. 2015), is publicly 
available (<www.nwfsc.noaa.gov/data/map>), and has 
been used to develop coast-wide indicators, including shifts 
in center of gravity (Thorson et al. 2016a). We selected 19 
groundfish species to model in this analysis based on a com-
bination of high commercial landings, market value, conser-
vation concern and prevalence in the survey data (Supporting 
information). It is important to note that the distributions of 
many of these species extend farther to the north and south. 
Therefore, conclusions from these analyses only describe the 

Figure 1. Visualization of how the spatial distribution of population density changes over time when the temporal response differs among 
locations. Predictions are shown from the spatial and temporal random effects of a GLMM with (top row) and without (bottom row) a 
spatially varying temporal trend (i.e. local trend). Each panel shows a field representing the spatial variation in population density at a given 
time, where time progresses among panels from left to right. When a spatially varying temporal trend is present, some regions develop 
systematically higher (red) or lower (blue) density over time. In contrast, when a spatially varying temporal trend is absent, spatial deviations 
from year-to-year are independent. For this example, we have omitted all other sources of variability and error for simplicity.
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dynamics of their density distribution within the survey area, 
and not their entire range. While the method does allow for 
making predictions outside the spatial domain of the data, 
we chose not extrapolate in this case because doing so would 
reduce the precision of our estimates.

We fit spatial GLMMs with and without a local trend  
(zs) to each species to evaluate whether the local trend may be 
appropriate for modeling how these 19 species change over 
time. We allowed both models to include spatial and spa-
tiotemporal components (independent by year, because pre-
liminary testing indicated that including temporal structure 
was not typically supported, as the 95% confidence interval 
around the estimate of the first-order autoregressive correla-
tion parameter included 0), depth modeled as a quadratic 
effect (Thorson et al. 2015), and year as a factor. Below we 
describe in detail the full model including the local trend.

Because of the positive continuous nature of the 
recorded fish densities combined with many zeros, we 
modeled the response ys,t (catch per unit effort [CPUE] at 
point in space s and time t) with a Tweedie distribution 
because it performs well with modeling such data (Tweedie 
1984, Dunn and Smyth 2005, Anderson  et  al. 2019),  
and a log link:
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where µ represents the mean, p represents the power param-
eter and φ represents the dispersion parameter. The αt param-
eters represent independent means estimated for each year, 
and β1 and β2 represent coefficients for log depth (D) and log 
depth squared (D2). The symbols w s and ε s,t represent spa-
tial and spatiotemporal random effects (respectively) drawn 
from Gaussian Markov random fields (Cressie and Wikle 
2011) with covariance matrices SSε and SSω. The symbol ζs 
represents the spatially varying coefficients that represent 
local trends through time, also drawn from Gaussian Markov 
random fields. Time, t, is entered into the model for mul-
tiplication with zs after centering it by its mean value. All 
three random fields have covariance matrices constrained by 
anisotropic Matérn covariance functions with independent 
scales but shared κ parameters controlling the rate of decay 
of spatial correlation with distance (Cressie and Wikle 2011, 
Thorson et al. 2015).

We approximated the continuous random fields using a 
triangulated mesh (Lindgren et al. 2011) with vertices at 350 
‘knots’ (a representative set of locations sensu Latimer et al. 
2009) as calculated with the INLA R package (Rue  et  al. 
2009). We found the minimum log likelihood using the R 
nlminb optimization routine with Template Model Builder 
(TMB; Kristensen  et  al. 2016) implementing the Laplace 

approximation to the marginal likelihood. TMB uses the 
generalized delta-method to calculate standard errors. 
Specifically, we fit all models in R ver. 3.5.3 (R Core Team) 
using the package sdmTMB (Anderson  et  al. 2019, 2020) 
which interfaces automatic differentiation in Template Model 
Builder (Kristensen et al. 2016) with INLA (Rue et al. 2009).

To compare models with different random effect struc-
tures (with and without the local trend field), we used 
restricted maximum likelihood (REML, Zuur et al. 2009) to 
generate Akaike’s information criterion values for each model 
(AIC, Akaike 1973). AIC is a relative measure of goodness-
of-fit that is penalized by the number of model parameters. 
Using AIC as a model screening tool, we found broad sup-
port for the inclusion of the local trend for these 19 species, 
with the trend model generating lower AIC values in 17 of 
the 19 cases, and AIC scores differing by less than two in the 
remaining two cases (Supporting information). To verify that 
AIC was effective at selecting the model most consistent with 
the data-generating process, we performed parallel contrasts 
(between models with and without the local trend) using 
simulated data.

Given the evidence supporting the local trend model as 
the most parsimonious model, we used this model structure 
to evaluate changes in species’ density distributions over time. 
To obtain a smooth surface of predicted density across the 
footprint of the survey area (Fig. 2), we predicted density at 
each location on a grid, where covariate values were defined 
using a composite of depth layers defined by NOAA bathym-
etry data (<www.ngdc.noaa.gov/mgg/coastal/crm.html>). 
These data were spatially aggregated using bilinear interpola-
tion to match the resolution of the survey sampling grid (~ 
2.8 × 3.7 km), which is the spatial resolution we used for 
all analyses. We implemented a number of diagnostics using 
spot checks on these predictions and model fits to further 
analyze whether a local trend was appropriate (e.g. examining 
spatial patterns in residuals and the estimated spatiotemporal 
component).

Using local trends as indicators of change

We compared inferences of changes in species’ density dis-
tributions obtained from metrics calculated on a spectrum 
of spatial resolution to demonstrate the utility of under-
standing fine-scale temporal trends. Quantifying change at 
multiple spatial scales has implications for the management 
of marine fishes and has utility as a spatial indicator within 
the California Current ecosystem. Specifically, we compared 
the fine-scale interpretation of the local trend and mean pre-
dicted density over all years to coarse-scale interpretations 
of: 1) the local trend, 2) regional COGs and 3) coastwide 
COG calculated from predicted densities y for each location 

s and time t ( COGt
s t s

s t

y L
y

=
å
å

,

,
, where Ls is the y coordinate 

of location s). We use the mean predicted density over time 
as a benchmark for describing how species’ distributions 
change because this can be interpreted as a ‘weight’ on the 
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local trend, where the product of the two defines the absolute 
magnitude of the change in density over time.

We evaluated whether local trend estimates from our 
model can be used to identify discrete areas of change that 
may reflect stock structure. One approach among many 
possible options for doing this is to apply post-hoc cluster 
analyses to model outputs or covariates; for our ground-
fish application, we used the partitioning around medoids 

(PAM) algorithm with estimation of the number of clusters 
to demonstrate a possible framework for boundary detection 
to be used with other system information to define appropri-
ate spatial scales for summarizing monitoring data (imple-
mented with R packages ‘fpc’ and ‘cluster’, Hennig 2019, 
Maechler et al. 2019). PAM is a robust clustering algorithm 
that minimizes the sum of Euclidean dissimilarities (root 
of sum-of-squares of differences) between observations and 

Figure 2. Map of the bathymetry within the US West Coast Groundfish Bottom Trawl Survey footprint. Cape Mendocino and Point 
Conception are labeled to represent the latitudinal boundaries between known predominant biogeographic regions (N.B. there is also more 
limited evidence for additional or alternative biogeographic breaks, e.g. Cape Blanco, the westernmost point in Oregon).
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cluster values (Reynolds et al. 2006, Kaufman and Rousseeuw 
2009). We used latitude and the predicted local trends as 
clustering variables given that the majority of the contrast in 
dynamics along the US west coast is in the latitudinal direc-
tion. For other applications, additional metrics could also be 
included in clustering including longitude, habitat features, 
environmental covariates or human impacts such as fisher-
ies removals. We chose the number of clusters (constrained 
between 1 and 10) that maximized the average silhouette 
width across all predictions for a given species (Kaufman and 
Rousseeuw 2009). Code and data necessary to replicate all 
above analyses are included in the repository for this project 
(<https://github.com/fate-spatialindicators/spatial-trend>).

Results

Simulation testing

Results from our simulation indicated that, as expected, 
both observation error variation and spatiotemporal varia-
tion degraded our ability to estimate the true local trend 

(Fig. 3). When both variance parameters were small,  
estimates were precisely estimated and unbiased (i.e. the  
distribution of differences between estimated and true values 
was centered at approximately zero, as was its greatest mass; 
Fig. 3a, d); however, large values of either (observation error 
σ or spatiotemporal σ ≥ 0.5) limited the ability to recover 
the trend by increasing the standard deviation (Fig. 3b, e) 
and decreasing correlation between true and estimated values  
of ζs (Fig. 3c, f ). Results of further sensitivity analysis were 
also as expected (Supporting information), with spatial varia-
tion having no effect on local trend estimates, while estimates 
of the local trend were only poor when the variation of the 
local trend field was extremely low (i.e. the signal was barely 
present and obscured by variation in other components, caus-
ing low correlation between estimated and true local trends; 
Supporting information). Furthermore, we found that the 
correct model (the model including the local trend) was eas-
ily distinguished by model selection using AIC except when 
observation error or spatiotemporal variation was extremely 
high, or when the local trend variance was extremely low 
(Supporting information).

Figure 3. Simulation testing the effects of observation error and spatiotemporal variation on the ability to recover the local trend. The sym-
bols θ and q̂  refer to the local trend random effect values at each location ζs and their estimate, respectively. Accurately recovering the local 
trend would be indicated by a bias of approximately zero, low standard deviation (SD) and high correlation between true and estimated 
values of ζs. Each violin represents the distribution of location by location comparisons from 100 simulations and the dots represent the 
median value. In all cases, the standard deviation σ of the non-varying parameter is held at 0.01, while σ of the parameter subject to the 
sensitivity test varies along {0.01, 0.25, 0.5, 0.75}. Note that these results were also computed for σ = 1 (Supporting information), yet are 
omitted here as they were very similar to results from σ = 0.75.
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West coast groundfish application

Predictions of the spatially explicit temporal trend from the 
local trend model revealed intricate fine-scale spatial struc-
ture in rates of change of species in the west coast ground-
fish community. Our cluster analysis of the estimated local 
trend and latitude helped to delineate areas with the greatest 
relative rate of change in density over time. Over 89% of 
species had non-trivial spatial heterogeneity in local trends 
(Fig. 4), where Pacific halibut and spotted ratfish were the 
only species that had similar trends across space. For the 
majority (58%) of species, at least one of the breaks between 
local trend clusters (unique columns of points in Fig. 4) 
occurred at a latitude within 100 km of the two predominant 
biogeographic breaks in this ecosystem: Point Conception 
in southern California and Cape Mendocino in northern 
California (Fig. 4). Furthermore, all species had at least one 
cluster break falling at latitudes between these two biogeo-
graphic boundaries and 79% of species had at least half of 
their cluster breaks in this area. However, there was variabil-
ity among species in the precise location of the boundaries 
of the local trend clusters. Results were similar, yet clusters 
were often less spatially contiguous (e.g. compare bocaccio 
between Fig. 4 and Supporting information for an extreme 

example), when clustering on only the local trend without 
latitude (Supporting information). Given the general prox-
imity between trend cluster breaks and the established bio-
geographic boundaries, we chose to evaluate the latitudinal 
center of gravity (COG) within each biogeographic region 
(rather than within each species-specific local trend cluster) 
to compare with the coastwide COG. Early exploration indi-
cated that results were qualitatively similar between these 
two approaches for defining the unit on which to compute 
COGs; however, we chose not to compute COGs by local 
trend cluster over concerns that this could minimize and 
obscure distribution shifts (e.g. if density is changing uni-
formly over time within a cluster, one would expect the COG 
of that cluster to remain relatively constant).

We highlight results for six groundfish species with unique 
distributional responses (Fig. 5; see Supporting information 
for results from additional species and for predicted density 
distributions for all 19 species). Within each of the six spe-
cies, there was support for 2–3 trends (Fig. 5; second col-
umn). Comparison of the local trend predictions and clusters 
(Fig. 5; first two columns) and the mean density from the 
full model (Fig. 5; third column) revealed how several unique 
patterns of regional relationships can contribute to nuanced 
and difficult to detect broad-scale distributional changes 

Figure 4. Strip plot showing each unique cluster of latitude and local trend (slope over time) by species. Within a species, each set of points 
associated with a given cluster are represented by a different column and colored by their deviation from the mean coast-wide trend for a 
given species. Grey points in the vertical plane represent clusters from which the local trend did not differ from (was within 0.01 of ) the 
mean coast-wide trend. Horizontal black lines represent approximate positions of known biogeographic breaks: Cape Mendocino, 
California, in the north; Point Conception, California, in the south (see map in Fig. 2). Horizontal gray shading represents a buffer of 100 
km around each biogeographic boundary, which provide a benchmark for the proximity statistics described in the main text.
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Figure 5. Spatial and temporal patterns of predicted density for selected species along the US west coast. Panels depict model outputs within 
the study area (Fig. 2), where the thin black polygon in maps is the land boundary. The first column shows maps of the predicted local trend 
(slope of log density across years). The second shows how each spatial location groups with a unique cluster of latitude and local trend, 
where each color represents a cluster. The first panel also shows how the latitudinal boundaries of established biogeographic breaks (thick 
black horizontal lines) separate the study area into three regions: north of Cape Mendocino, California (north); south of Point Conception, 
California (south); and between these two landmarks (central). The third column represents the mean density over all years. The fourth 
column shows the time series of the center of gravity (COG, or latitude weighted by density) with 95% confidence intervals along the same 
y-axis scale as the maps in adjacent columns. The black line with grey interval represents the COG calculated from predicted densities coast-
wide, whereas the colored lines represent the COGs for each unique biogeographic region (corresponding to the range of northings indi-
cated by the map panels). Line color represents the proportion of a species’ relative biomass in a given region.
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including northward, southward and bi-directional (conver-
gent or divergent) density shifts (examples below), in addi-
tion to localized offshore shifts (e.g. sablefish off Oregon 
and northern California – red near shore and blue further 
offshore). Furthermore, the interpretation of the distribu-
tional change often varied between spatial scales of metrics. 
Typically, inference differed the most between the fine-scale 
map-based interpretation of the local trend and the coast-
wide COG. The map of estimated mean density allows one 
to visually weight the local trend map to better understand 
where absolute changes in density are greatest.

Examining the predictions of the local trend and den-
sity indicated that arrowtooth flounder Atheresthes stomias 
had a southward density shift and shortspine thornyhead 
Sebastolobus alascanus had a northward shift, yet the COG 
inferences differed to some degree between species. The pre-
dicted mean density (column 3) indicated that the majority 
of arrowtooth flounder (Fig. 5, first row) was in the northern 
region, yet the local trend pattern indicates that their density 
is increasing at the highest rate in the central region (column 
1). Combined, these regional results suggest a southward 
shift driven by increases at the southern range edge, similar 
to the traveling wave pattern demonstrated by many species 
invasions. The time series of the coast-wide COG (black line 
in column 4, Fig. 5) is in agreement of a southward shift, 
yet the interpretation is not as clear because the coast-wide 
pattern is heavily weighted by the high densities in the far 
northern portion of the study area. When the COG from 
each biogeographic region is calculated (colored lines in col-
umn 4, Fig. 5), we can see that coast-wide COG has been 
driven further south in the latter half of the time series by 
decreases in the COG in the central region while the north-
ern COG had almost no trend, providing additional support 
for the possibility that the change is due to increased density 
or southward shifts in the central region.

For other species in our analysis, even the region-spe-
cific COG does not accurately capture the nuanced spatial 
changes described by the local trend field. For example, 
shortspine thornyhead is distributed coast-wide, yet their 
density is increasing fastest in the north-central area and 
decreasing in the south and within some isolated patches in 
the far northern end of the region (Fig. 5, last row, column 
1). In this case, the coast-wide COG indicates a northward 
distribution shift, yet the region-specific COG indicates 
converging trends, perhaps indicative of contraction of the 
core range: slightly southward shifting in the northern region 
and slight northward shift in the central region. Thus, the 
interpretation from the COGs at both scales are relatively 
consistent with the fine-scale interpretation of the local trend  
(Fig. 5 column 1), yet these coarse-scale metrics still mask 
underlying patterns, in this case the decreased density in the 
southern region.

Other species demonstrated additional patterns of changes 
in spatial distribution of density and contrasting inference 
among metrics, including bocaccio rockfish Sebastes paucispi-
nis, English sole Parophrys vetulus, petrale sole Eopsetta jordani 
and sablefish Anoplopoma fimbria. Bocaccio were typically 

more abundant in the southern and central areas (Fig. 5 col-
umn 3) yet were experiencing the fastest increases in density 
in the north (Fig. 5 column 1), indicating a northward den-
sity shift. These observations contrast with those from the 
COG, where the coast-wide COG for bocaccio was highly 
variable with either no trend or a very slight southward trend, 
and the COG of the northern region indicates a southward 
shift in some years (Fig. 5 column 4). Divergent density shifts 
were observed for English sole and, to some extent, petrale 
sole. English sole were typically present in relatively similar 
densities coast-wide, yet the local trend indicated that densi-
ties were increasing fastest at the northern and southern ends 
of the region. However, the coast-wide COG reveals only a 
slight southward shift, while the region-specific COGs show 
only a slight northward shift in the northern region. Petrale 
sole had a complex local trend field, increasing fastest in the 
north with the exception of isolated declining patches on the 
inshore side. These changes are somewhat consistent with the 
coast-wide COG indicating a slight northward trend amidst 
moderate interannual variability. However, COGs of the 
northern and central regions – where petrale sole are typi-
cally most prevalent – indicated a divergent pattern, in which 
densities were shifting northward in the northern region and 
slightly southward in the central region. Finally, no obvious 
directional shift in density was apparent in the local trend for 
sablefish, yet the coast-wide COG time series indicated that a 
northward shift had occurred in the most recent 5–6 yr. The 
region-specific COG indicates that this was driven by density 
changes in the northern and to some extent central regions. 
Thus, depending on the evidence used, one could either con-
clude that there was a recent northward density shift, or sim-
ply an increase in productivity or aggregation near the core of 
the range within the north-central area.

Discussion

The complex spatial distribution of biotic and abiotic driv-
ers of population productivity and habitat suitability in 
ecosystems suggests that fine-scale descriptors may provide 
a more accurate representation of changes in species distri-
butions than global indicators calculated across an entire 
region. Here, we introduced a new approach to modeling and 
summarizing spatially referenced time series data on species 
population densities to calculate area-specific trends in popu-
lation size. Our approach was able to recover local trends in 
simulated data and reveal nuanced local trends in the dynam-
ics of 19 marine fishes off the west coast of the USA that 
often differed from conventional descriptors of larger scale 
distribution shifts (Woillez  et  al. 2009, Pinsky  et  al. 2013, 
Thorson et al. 2016a). Furthermore, the ability of our models 
to detect geographic boundaries between regions with dif-
ferent trends was supported as these boundaries were often 
congruent with known biogeographic breaks (yet we acknowl-
edge that this may be influenced by assumptions affecting 
the optimization of the number of clusters and other factors 
that require deeper investigation to strengthen this initial 
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finding). Therefore, boundary detection techniques applied 
to a local trend field may be valuable for helping to define 
appropriate spatial scales for summarizing monitoring prod-
ucts (such as abundance time series) or regulating the spatial 
allocation of human impacts (e.g. allowable take of animals 
or plants), especially in cases where little other information 
on spatial population and community structure is available. 
Furthermore, we note that the local trend model described 
here has potential for broad applications to a variety of other 
data types beyond population density (e.g. spatial patterns of 
temperature variability) and other systems (as an extension of 
existing applications, Banerjee et al. 2008, Finley et al. 2009, 
Latimer et al. 2009, Cressie and Wikle 2011, Thorson et al. 
2016b, Hocking et al. 2018)

Our simulations and application of the local trend model 
indicate that our proposed approach can improve estimation 
and communication of spatially varying temporal trends in 
population density. In particular, our application to marine 
fish survey data indicated that models including a local trend 
field were more parsimonious than those without a local 
trend. This result is consistent with a recent study incorporat-
ing a spatially varying influence of an oceanographic index on 
groundfish distributions in the eastern Bering Sea (Thorson 
2019a). Furthermore, according to our simulations the esti-
mated local trends were less biased than those estimated 
post-hoc from predictions of a model without the local trend 
field. However, the local trend model is somewhat sensi-
tive to observation error and spatiotemporal variation. Such 
sources of variation can obscure the local trend, yet this is to 
be expected in the same way that any trend is less detectable 
given noisier data (Weatherhead et al. 1998). Therefore, our 
method is likely most skillful at detecting spatial structure 
in population or community dynamics from observations 
with precise measurement within systems with low temporal 
variation in spatial structure (e.g. those consisting of species 
with higher longevity, generation time and site fidelity, and 
lower rates of movement and variation in dispersal paths). 
We expect that the predictions in our example application in 
this study are robust to the sensitivity of the method to spa-
tiotemporal variation because the estimated spatiotemporal 
variance is much lower than the spatial variance for ground-
fish species in this system. Observation error in trawl surveys 
can include a wide range of values as a result of variance in 
sampling efficiency (Kotwicki and Ono 2019), but relating 
such values to the observation error scale parameter evaluated 
in our simulations requires additional research. Additional 
ways to constrain the variance parameters, such as develop-
ing informative Bayesian priors from similar surveys might 
extend the detectability of local trend structure over the mod-
els used here.

We showed how inference about shifts in species’ popula-
tion density depend on the spatial scale at which they are 
summarized. When we applied the local trend model to 
marine fishes, the resulting maps of the local trend and den-
sity from the model revealed nuanced patterns of heteroge-
neity and directional change in groundfish density. Taking 
the predicted density to represent the underlying spatial 

heterogeneity, the local trend random field conveyed fine-
scale information about potential range dynamics that were 
masked when evaluating coast-wide COG time series. The 
disparity of inference was greatest in cases where density was 
increasing fastest at opposing ends of a range, density was 
spatially diverging, or where density among patches were con-
verging toward the center of the distribution. Furthermore, 
when examining only the coast-wide COG, one is unable to 
differentiate between shifts due to an increase in density in 
one area or a decrease in density in another area.

For complex ecosystems such as the US west coast, and 
other coastal upwelling systems where physical variables like 
temperature do not follow a simple monotonic gradient over 
broad geographic scales, it may be too simplistic to expect clear 
coast-wide trends in COG across multiple species as a result 
of climate change. These coast-wide patterns are observed in 
systems with broader continental shelves such as the north-
east US (Pinsky et al. 2013, Kleisner et al. 2016) where the 
major boundary currents are far from the coast. However, 
along coastlines with narrower continental margins, such as 
the US west coast, fish may be able to find equivalent tem-
peratures by moving much shorter distances perpendicular 
to the shelf break (Li et al. 2019). Furthermore, population 
and community density distributions are inherently patchy, 
particularly for species associated with patchy reef habi-
tats, meaning that detecting a redistribution over time may 
require careful examination of the microstructure of density 
distribution rather than a region-wide shift in mean density 
distribution. We encourage future research on species dis-
tribution shifts that begins with more specific and nuanced 
hypotheses regarding the expected response at shorter and 
perhaps longer time scales than those explored here, as spa-
tially explicit trends are likely to differ between intra-annual, 
inter-annual and inter-decadal time scales. For example, 
event-scale analyses of the local trend could help test how 
different species population density distributions respond as 
a result of movement or demography to disease outbreaks, 
intensive harvesting or extreme climate events such as marine 
heat waves. If climate change causes a global intensification 
of upwelling over longer time scales as some researchers pre-
dict (Bakun et al. 2010), one could hypothesize that density 
distributions will become patchier over time in response to 
increasing contrast in local physical conditions, or that dis-
tributions will shift deeper as larvae are transported further 
offshore before settling.

The future of environmental conservation and natural 
resource management relies on greater incorporation of spa-
tial information into models that inform such policies and 
into the decision-making process itself (Berger  et  al. 2017, 
Lowerre-Barbieri et al. 2019). By defining the geography of 
population trends and the breaks between clusters of loca-
tions with similar trends, our modeling framework provides 
a data-driven method to objectively define the spatial scale 
and boundaries for summarizing monitoring data and struc-
turing these inputs to resource management models. This is 
an important advancement over non-spatial resource assess-
ments or the reliance on the use of jurisdictional boundaries 
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to structure resource assessments. Our vision is that these 
and subsequent methods for boundary detection will aid the 
development of spatial resource assessment models and stimu-
late further applications of such approaches to more disparate 
management solutions such as invasive species management. 
Furthermore, extensions of the methods presented here may 
lead to the creation and improvement of spatial indicators for 
monitoring factors affecting emergent ecological properties 
(Barnett et al. 2019 and references therein). Novel indicators 
of ecological stability could arise from metrics of the spatial 
structure of temporal trends or oscillations in population 
density (Kéfi et al. 2014, Walter et al. 2017), by drawing on 
the evidence that spatial heterogeneity can increase popula-
tion and community stability by disrupting synchrony across 
space or among species (Huffaker 1958, Tilman and Kareiva 
1997, Hassell 2000).
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